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ABSTRACT 
A method for applying probabilistic models to 

concentrating solar thermal power plants is described in this 
paper.  Benefits of using probabilistic models include 
quantification of uncertainties inherent in the system and 
characterization of their impact on system performance and 
economics.  Sensitivity studies using stepwise regression 
analysis can identify and rank the most important 
parameters and processes as a means to prioritize future 
research and activities.  The probabilistic method begins 
with the identification of uncertain variables and the 
assignment of appropriate distributions for those variables.  
Those parameters are then sampled using a stratified 
method (Latin Hypercube Sampling) to ensure complete and 
representative sampling from each distribution.  Existing 
models of performance, reliability, and cost are then 
simulated multiple times using the sampled set of 
parameters.  The results yield a cumulative distribution 
function that can be used to quantify the probability of 
exceeding (or being less than) a particular value.  Two 
examples, a simple cost model and a more detailed 
performance model of a hypothetical 100 MWe power 
tower, are provided to illustrate the methods. 

1. INTRODUCTION 
Modeling the performance and economics of solar 

power plants based on technologies such as power towers 
and parabolic troughs has evolved over several decades.  
Yet nearly all of the modeling performed previously 
implement deterministic evaluations of the system or 
component performance.  Input parameters are typically 
entered as specific values rather than distributions of values 
that honor the inherent uncertainty in many of the system 
features and processes.  As a result, the confidence of the 

deterministic result and uncertainty associated with the 
results are unknown.   

This paper presents a probabilistic method to yield 
uncertainty analyses that can quantify the impact of system 
uncertainties on the simulated performance metrics.  The 
confidence and likelihood of the simulated metric (e.g., 
levelized energy cost) being above or below a particular 
value or within a given range can be readily assessed and 
presented using these probabilistic methods.  In addition, 
sensitivity analyses can be used with probabilistic analyses 
to rank and quantify the most important components, 
features, and/or processes that impact the simulated 
performance.  This information can be used to guide and 
prioritize future research and characterization activities that 
are truly important to the relevant performance metrics. 

Probabilistic methods are used widely in many fields 
including risk assessments and waste management, and they 
are required by the Nuclear Regulatory Commission for 
performance assessments of nuclear waste repositories [1].  
Becker and Klimas [2] implemented a probabilistic method 
for simulating a hypothetical 100 MWe power tower using 
the levelized energy cost as a metric.  This work extends the 
work of Becker and Klimas [2] and investigates additional 
examples and performance metrics (e.g., net annual energy 
production).  Direct costs are also updated to reflect 
inflation factors from 1990 to 2008. 

2. MODELING APPROACHES 
Models and codes used to model solar thermal power 

plants can be grouped according to a total-system modeling 
pyramid, which describes a natural hierarchy for modeling 
complex systems ( ).  At the top, total-system 
models are used to evaluate overall performance metrics 
such as levelized energy cost or power output.  These total-
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system models rely on input from more detailed process 
models that provide information regarding the performance 
of individual components within the total system.  The 
process models require input parameters and distributions 
(for uncertainty and sensitivity analyses) that are acquired 
through various means such as testing, literature, surveys, 
and/or professional judgment.  This modeling pyramid is 
often used as the framework for modeling complex systems 
because it provides a logical flow and organization of the 
information and modeling activities. 
In addition to passing information up from the detailed 
process models and parameters, the framework calls for 
information being passed down from the top to assist in 
prioritizing modeling and characterization efforts in areas 
that have been shown in the models to significantly impact 
the relevant cost and performance metrics.  

2.1 Deterministic Modeling 
Deterministic models use single (or central) value 

estimates for each input parameter.  For each state or 
scenario of the physical system that is modeled, a unique set 
of input parameters and boundary conditions is applied.  
Therefore, deterministic models yield a single result for 
each scenario modeled, and the uncertainty associated with 
the result is not quantified.  Sensitivity analyses can be 
performed parametrically by selectively varying input 
parameter values to determine the potential impact on the 
simulated metric.  However, this process can be arduous 
with more than a few parameters, and sensitivities can be 
confounded by interactions among parameters that have 
dependencies on one another.   

2.2 Probabilistic Modeling  
In contrast to deterministic models, probabilistic 

models allow for a quantification of the uncertainty inherent 
in the input parameters and processes being modeled.  
Probabilistic models provide an estimate of confidence and 
reliability in the predicted results, along with more rigorous 
sensitivity analyses that identify the parameters and 
processes that are most important to the simulated metrics.   

Screening analyses are first conducted to determine a 
subset of input parameters that are to be assigned 

uncertainty distributions as opposed to deterministic point 
values.  The uncertainty distributions (e.g., uniform, 
normal) can be based on actual data, literature values, 
professional judgment, etc.  Monte Carlo or Latin 
Hypercube sampling methods are then implemented in the 
model to generate many different (but equally probable) 
realizations of the system performance.  The ensemble of 
realizations generates a cumulative probability distribution 
that can be used to quantify the uncertainty in system 
performance.   

It should be noted that the number of runs (or 
realizations) necessary for a random probabilistic (Monte 
Carlo) simulation, which is prone to sample clustering, 
increases as the number of uncertain input variables 
increases.  Latin hypercube sampling (LHS) is a stratified 
sampling method that reduces the number of necessary 
realizations by ensuring that values are sampled from across 
the entire input distribution.  LHS software has been 
developed at Sandia National Laboratories that implements 
this method and allows for correlations among input 
variables [3].  The minimum number of samples required to 
implement a restricted pairing among the sampled variables 
(either to correlate variables or to minimize correlation) is 
approximately 4k/3, where k is the number of uncertain 
variables [4].  

A stepwise regression analysis is then performed to 
determine the input parameters that are most correlated to 
the variability of the simulated performance metric, 
indicating those parameters or processes that are most 
important to the system performance. The sensitivity of the 
probabilistic model to uncertain input variables can be 
determined using regression analysis.  Multiple regression 
analysis involves construction of a linear regression model 
of the simulated output (the dependent variable) and the 
stochastic input variables (independent variables) using a 
least-squares procedure.  Stepwise linear (rank) regression 
is a modified version of multiple regression that selectively 
adds input parameters to the regression model in successive 
steps [5].  In this method, a sequence of regression models 
is constructed that successively adds the most important 
input parameters to the regression to improve the overall 
correlation. In the end, the sensitivity analysis identifies 

 

  

  

  
Total system models – performance and cost 
(e.g., SAM, SOLERGY) 
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storage processes, power output) 

Input parameters and distributions 
(e.g., geometry, reflectivity, solar radiation, temperature, 
flow rates, efficiencies, costs )  

 

Figure 1.  The total-system modeling pyramid. 
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those parameters that are significantly correlated to the 
performance metric, and omits those parameters that are 
not.   

3. ANALYSIS AND DISCUSSION 

3.1 Simple Cost Example 
As an illustrative example, Figure 2 shows a plot of the 

levelized energy cost (LEC) for a hypothetical solar thermal 
power plant calculated using both probabilistic and 
deterministic methods.  In both methods, the LEC was 
calculated using the simplified equation from Becker and 
Klimas [2]: 

&
( )( )

Annualized CapitalCosts AnnualO M CostsLEC
Annual Energy Generated Availability

+
=    (1) 

In the probabilistic model, each of the four variables in 
Equation (1) was treated as an uncertain parameter (see 
Table 1).  Each variable is represented by a distribution of 
values that can be based on data, literature, model results, 
and/or professional judgment.  In this example, a 
hypothetical uniform distribution was used for each input 
parameter based loosely on values reported in Becker and 
Klimas [2].  Equation (1) was calculated 300 times (300 
realizations) using randomly sampled values from the 
distribution of input parameters to yield a distribution of 
equally probable LEC values.  The distribution of calculated 
LEC values ranged from approximately $0.08/kWh to 
$0.16/kWh.   

Figure 2 shows these results as a cumulative 
distribution function (CDF), or cumulative probability.  This 
plot can be used to predict the probability of the LEC being 
less (or more) than a particular value, or between two 
values.  For example, in this hypothetical example, there is 
approximately a 95% probability that the LEC will be less 
than ~$0.14/kWhe and a 5% probability that the LEC will 
be greater than ~$0.14/kWhe.  There is approximately a 0.9 
– 0.2 = 0.7 (70%) probability that the LEC will be between 
$0.10/kWhe and $0.14/kWhe. 

  

Table 1.  Uncertainty parameter distributions for simple 
cost example. 

Parameter Distribution 
(30 year life) 

Capital Costs ($M) Uniform 
28.4 – 37.3 

O&M Costs ($M) Uniform 
3.6 – 5.4 

Annual Energy (kWh) Uniform 
2.96E+08 – 4.44E+08 

Availability Uniform 
0.85 – 0.95 
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Figure 2.  Cumulative distribution function of LEC for 

simple cost example. 

The deterministic model, using average or “central” 
values for the uncertain input parameters, predicts an LEC 
of just over $0.11/kWhe, which happens to be the median 
(50th percentile) of the probabilistic model.  This single 
value does not provide any indication of the amount of 
uncertainty in the output (e.g., that there is a 50% 
probability that the LEC will be greater than $0.11/kWhe in 
this hypothetical example).  Also, the deterministic LEC 
value may shift left or right in Figure 2 depending on the 
nature of the distributions used for the input parameters 
(e.g., uniform, normal, log-normal).  For example, if most 
of the input distributions were log-normally distributed, the 
deterministic LEC value may fall in the 20th to 30th 
percentile instead of the 50th percentile. 

Figure 3 shows the results of a stepwise linear 
regression sensitivity analysis using the 300 hypothetical 
realizations shown in Figure 2.  The vertical axis is 
represented by ΔR2, the change in the coefficient of 
determination when a new independent variable is added to 
the model.  The value of ΔR2 describes the percentage of the 
uncertainty or variability in the simulated LEC (or other 
simulated metric) that is caused by the uncertainty in each 
input variable. The cumulative ΔR2 for this example is 0.98, 
which indicates a good overall correlation using the 
multiple rank regression model. 

The sensitivity analysis shows that the simulated LEC 
is most sensitive to the annual energy produced (over 70% 
of the uncertainty in simulated LEC can be explained by the 
uncertainty in annual energy produced), followed by the 
annualized capital costs.  The availability and annual O&M 
costs are much less important in this hypothetical example.  
Therefore, further characterization and research efforts 
could be focused on those components and processes that 
affect the annual energy produced and capital costs, which 
are shown to have the most impact on simulated LEC in this 
hypothetical example. 
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Figure 3.  Sensitivity analysis showing relative 

importance of uncertain input parameters on simulated 
LEC for simple cost example. 

In addition to ΔR2, the standardized regression 
coefficient (β) is another statistical measure that evaluates 
the relative contributions of each input parameter to the 
magnitude of the dependent variable (as opposed to the 
variability of the dependent variable).  The sign of β also 
gives the direction of correlation.  The importance ranking 
of the independent variables using either ΔR2 or β are 
typically the same. 

In an actual uncertainty and sensitivity analysis, the 
uncertainty of detailed lower level components and 
processes (e.g., collector performance, flow rates, heat loss, 
storage, turbine output, etc.) should be included in the 
model.  In this hypothetical example, the uncertainties of the 
detailed components and processes are rolled into one of the 
four high-level parameters defined in Equation (1).  For 
example, all of the uncertainties associated with detailed 
performance modeling are rolled into the “Annual Energy 
Produced,” and all of the uncertainties associated with 
component reliability are rolled into the “Availability.”  
Another example with more detailed consideration of these 
subcomponents and processes is provided in the next 
section. 

3.2 Hypothetical 100 MWe
 Power Tower 

A hypothetical 100 MWe molten-salt central receiver 
power-tower system with thermal storage (Figure 4) was 
simulated using a power-tower performance code 
(SOLERGY), a reliability model, and a simple cost model.  
The models assumed a plant life of 30 years, a storage 
capacity of 7 hours, and used the 1977 weather data for 
Barstow, CA, which yielded a direct normal insolation of 
2.7 MWh/m2/yr.  Other deterministic parameters used in the 
models were taken from [2]. 

After an initial screening, a total of 33 parameters were 
assigned uncertainty distributions to represent the inherent 
uncertainty in values associated with costs, the heliostat 
field, receiver, storage, and power-block components. The 
uncertain input parameters are summarized in the Appendix 

(Table 2, Table 3, and Table 4; 32 parameters are defined in 
the tables, and the 33rd (O&M costs) is defined in Section 
3.2.1).  The following sections provide a brief overview of 
the models and uncertainties implemented in the analysis. 

 
Figure 4.  Schematic of hypothetical molten-salt central 
receiver system with thermal storage (from Falcone [6]). 

3.2.1 Cost Model 
The cost model that was used is the same as in Eq. (1), 

but additional parameters were used to account for indirect 
charges and financing.  The following equation was used to 
calculate the annualized capital costs used in Eq. (1): 

Annualized capital costs =  
FCR*DC*(1+INDC)*(1+AFUDC) (2) 

where FCR = constant-dollar fixed charge rate = 7.4% 
(derived from [7])  

 DC = total direct costs 
 INDC = indirect charges = 17% (from [2]) 

AFUDC = allowed funds during construction to 
cover interest charges = 6.57% (from [2]) 
 

Uncertain cost parameters used in the model are 
summarized in Table 2 in the Appendix.  It should be noted 
that the direct costs reported in [2] were multiplied by an 
inflation cost index to reflect increases in direct costs from 
1990 to 2008.  The annual operating and maintenance 
(O&M) costs were assumed to be a percentage (uniformly 
distributed between 2-3%) of the direct costs. 

3.2.2 SOLERGY Model 
SOLERGY [8] simulates the annual energy output of a 

solar thermal power plant and  has been validated using data 
from Solar One [9].  It utilizes actual or simulated weather 
data at time intervals of 15 minutes and calculates the net 
electrical energy output at every time step throughout an 
entire year.  Input to the code is entered via user-specified 
text files.   

Factors include energy losses in each component of the 
system, delays incurred during start-up, weather conditions, 

 4 Copyright © 2009 by ASME 



storage strategies, and power limitations for each 
component. Table 3 summarizes the uncertainty 
distributions used in SOLERGY for this analysis.  The 
deterministic value of the total annual energy output 
(348,018 MWh) was calculated using the central values in 
Table 3. 

3.2.3 Reliability Model 
The reliability model assumes that all of the 

components act in series (if one component goes down, the 
entire system goes down).  The following equation is used 
to calculate the overall availability, A, of the system with n 
components based on the mean time between failure 
(MTBF) and mean down time (MDT) of each component, i: 

 
( )1

n
i

i ii

MTBFA
MTBF MDT

=

=
+∏  (3) 

Table 4 in the Appendix summarizes the uncertainty 
distributions used in the reliability model.  The deterministic 
value for the total availability (0.905) was calculated using 
the central values listed in Table 4 and Table 5. 

3.2.4 Results 
A total of 64 realizations were implemented using Latin 

Hypercube Sampling of the uncertain parameters defined in 
Table 2, Table 3, and Table 4 in the Appendix. The 33 
parameters were assumed to be independent, and the sample 
pairings were restricted to minimize the correlations within 
the LHS model.  The number of realizations was sufficient 
to implement the restricted pairings in LHS (64 > 4k/3) and 
to produce reasonable distributions (between the 5th and 95th 
percentiles) for this illustrative example.  

SOLERGY was run 64 times using the sampled sets of 
input parameters.  The availability model defined by Eq. (3) 
was also run 64 times using the 64 sets of parameters 
sampled from the parameters in Table 4.  Finally, the cost 
model defined by Eqs. (1) and (2) was run 64 times using 
the results from SOLERGY, the availability model, and the 
cost parameters listed in Table 2.  

Figure 5 shows the cumulative probability for the 
simulated annual SOLERGY net energy output, which 
ranges from 328 – 370 GWh.  The deterministic result (348 
GWh) is also shown in the plot and corresponds to a 
cumulative probability of 0.6.  This indicates that there is a 
60% probability that the actual net energy output will be 
less than the deterministic value of 348 GWh in this 
hypothetical power-tower simulation.  It is interesting to 
note that although the uncertain parameters used in 
SOLERGY were all uniformly distributed, the deterministic 
result is not at the 50% percentile of the cumulative 
probability (it is at 60%).  This is due to the nonlinear 
models and responses in SOLERGY. 

Figure 6 shows the results of a stepwise linear 
regression analysis of the SOLERGY results.  The uncertain 
input parameters were used as the independent variables, 

and the SOLERGY net energy output was used as the 
dependent variable. Results show that all six of the 
parameters chosen to be represented by uncertainty 
distributions were statistically significant, but the parasitics, 
receiver heat loss, heliostat cleanliness, and receiver 
absorption were most important.  Uncertainty in the 
heliostat availability and receiver start-up time were less 
important.  The cumulative ΔR2 was 0.96 for the multiple 
rank regression of simulated net energy output. 
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Figure 5.  Cumulative probability for annual SOLERGY 

net energy output. 

 
Figure 7 shows the cumulative probability for the LEC 

using the SOLERGY, reliability, and cost models.  The 
simulated LEC ranges from approximately $0.11/kWh to 
$0.15/kWh for the uncertainty distributions used in the 
models.  The deterministic result of just over $0.12/kWh 
has a cumulative probability of 0.45.  Therefore, there is a 
45% probability that the LEC will be less than the 
deterministic value (between ~$0.10/kWh and $0.123/kWh) 
and a 55% probability that the LEC will be greater than the 
deterministic value (between $0.123/kWh and ~$0.15/kWh) 
in this simulation. 

Figure 8 shows the sensitivity study using a stepwise 
linear regression analysis of the LEC simulation.  All of the 
uncertain input parameters used in the SOLERGY, 
reliability, and cost models were used as the independent 
variables, and the simulated LEC was used as the dependent 
variable.  The cumulative ΔR2 was 0.97 for the multiple 
rank regression of simulated LEC.   

The sensitivity analysis shows that the simulated LEC 
is most sensitive to the heliostat (collector) costs (nearly 
60% of the simulated LEC variability is explained by the 
variability in heliostat costs), followed by the O&M costs.  
Specific processes associated with the performance of the 
system were also found to be important to the LEC, 
including reliability of the components, parasitics, receiver 
absorption, and heliostat performance.  Therefore, to reduce 
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costs, further characterization and research efforts could be 
focused on these components and processes, which were 
shown to have the most impact on simulated LEC in this 
analysis of a hypothetical 100 MWe power tower.  It should 
be noted that additional uncertainties pertaining to weather, 
the power cycle, and other processes that were not included 
in this example may also significantly impact the simulated 
performance and cost metrics.  In addition, the distributions 
used in the analysis of this power-tower example were 
different than those used in the simple cost example 
(Section 3.1), so results are not directly comparable. 
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Figure 6.  Sensitivity analysis using SOLERGY net 

energy output as the metric and the uncertain 
parameters in Table 3 as inputs. 
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Figure 7.  Cumulative probability for levelized energy 

cost using SOLERGY, reliability, and cost models. 

4. CONCLUSIONS AND FUTURE WORK 
This paper described a probabilistic approach for 

modeling solar thermal power plants.  Two examples were 
provided utilizing a simple cost model and a more detailed 
performance model.  The following summarizes the major 
points and conclusions, as well as future directions: 

• Probabilistic modeling can provide a rigorous 
quantification of uncertainty in simulated 
performance and economics of solar thermal power 
plants.  The probability that a simulated metric (e.g., 
LEC, net energy output) will be greater than and/or 
less than a particular value can be readily assessed. 

• Stepwise multiple regression models provide 
sensitivity analyses that identify the most important 
parameters that impact system performance and 
economics.  This information can be used to identify 
and prioritize research to better characterize and 
improve system components and processes that most 
impact the performance and cost. 

• Incorporation of these probabilistic methods into 
total-system models such as SAM [10] and 
SOLERGY [8] will provide additional reliability and 
confidence in the results through quantification of 
the inherent uncertainties and their impact on the 
system. 
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Figure 8.  Sensitivity analysis using LEC as the metric 

and all 33 parameters as inputs. 
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APPENDIX:  UNCERTAIN PARAMETER DISTRIBUTIONS FOR HYPOTHETICAL 100 MWE POWER TOWER 

The following tables of uncertain parameter distributions are taken from Becker and Klimas [2]. 
 

Table 2.  Uncertainty distributions for cost parameters [2]. 

No. Parameter1 
Central 
Value2 

($M) 
Distribution Rationale 

1 Land 1.4 
Uniform ±15% 

about the 
central value 

Central value was a consensus guideline and was based on the utility 
study. The uncertainty is based on the cost of land varying by 
$0.03/m2. Utility Study variation was -10 to +30%. 

2 Structures & 
Improvements 3.7 

Uniform ±15% 
about the 

central value 

Central value was a consensus guideline and was based on the utility 
study. The lower bound is based on the consensus discussion and the 
costs estimated from PHOEBUS.3 

http://www.gpoaccess.gov/CFR/retrieve.html
http://www.gpoaccess.gov/CFR/retrieve.html
http://infoserve.sandia.gov/sand_doc/1998/980210.pdf
http://www.jstor.org/stable/1403510?seq=1
http://infoserve.sandia.gov/sand_doc/1999/992240.pdf
http://infoserve.sandia.gov/sand_doc/1986/868009.pdf
http://infoserve.sandia.gov/sand_doc/1986/868060.pdf
http://infoserve.sandia.gov/sand_doc/1988/880321.pdf
http://www.nrel.gov/analysis/sam/support.html#userguide
http://www.nrel.gov/analysis/sam/support.html#userguide
http://infoserve.sandia.gov/sand_doc/1987/878022.pdf


No. Parameter1 
Central 
Value2 

($M) 
Distribution Rationale 

3 Collector 
System 92.2 

Uniform ±18% 
about the 

central value 

Central value and range based on discussion in Section 6.3.1 of [2]. 
Estimates are based on SAIC and SKI analysis and include film 
replacement. 

4 Receiver 
System 25.6 

Uniform ±18% 
about the 

central value 

Central value is based on a semi-detailed costing of the individual 
components in the receiver, tower, and heat transport system. The 
costing is on the same level as the utility study estimates (without the 
detailed design). Bounds are based on stacking the bounds from each 
of the individual systems. Receiver cost is $13.2 M (includes 
contingency), tower cost is 6.3, and heat transfer system cost is 6.1 
(both include contingency). Uncertainties on the receiver, tower, and 
H.T. systems are 20, 15, and 20% respectively. The upper bound for 
each system was based on the utility study receiver system 
(escalated, with competitive bids, downsized for this plant). The lower 
bound is assumed to be symmetric to the upper bound. 

5 
Thermal 
Storage 
System 

23.9 
Uniform ±14% 

about the 
central value 

Central estimate is based on an average of the CBI and PDM costs 
used in the utility studies. The salt cost is an average of the utility 
study cost and natural salts from Chile. All the costs are escalated for 
inflation. The lower bound is based on the utility study CBI costs with 
the low cost (Chile) salt and the upper bound is based on the PDM 
costs with the utility salt. 

6 Steam  Gen. 
System 10.6 

Uniform ±23% 
about the 

central value 

Central value is based on an average of the B&W design from the 
utility study and a scaled-up CE Lummus. Both costs are escalated. 
The upper and lower bounds are based on B&W and CE Lummus, 
respectively. 

7 

EPGS - 
Electric Power 

Generating 
System 

42.0 
Uniform ±14% 

about the 
central value 

Central is based on the average of a cost estimate from LUZ 
(obtained from CEC) scaled-up to 100-MWe and an estimate from H. 
Fricker (derived at the 3/90 meeting and based on ABB data). The 
upper and lower bounds are based on the Fricker and LUZ estimates, 
respectively. 

8 Master Control 
System 2.7 

Uniform ±10% 
about the 

central value 

Central estimate is based on a consensus from the 4/90 meeting. The 
consensus was based on cost of the control system for the 30-MWe 
plant, which Interatom (for PHOEBUS3) has costed to be $2 M and 
Sandia had costed to be $1.8 M. We agreed on a $2.0 M. The 100-
MWe cost is scaled-up using the 0.3 factor. The uncertainty bound is 
based on the utility study estimate. 

1O&M Costs are uniformly distributed between 2 – 3% of the total capital costs. 
2In this study, the sampled capital costs are multiplied by 1.63, the consumer price index inflation factor from 1990 to 2008 
(http://data.bls.gov/cgi-bin/cpicalc.pl).  The values in this table are the 1990 values. 
3PHOEBUS was an industrial consortium in the 1990’s that investigated commercialization opportunities for solar-thermal 
power-plant technologies. 

 

Table 3.  Uncertainty distributions for SOLERGY parameters [2]. 

No. Parameter Central 
Value Distribution Rationale 

9 Receiver Absorptance 0.93 Uniform 
.91-.95 

Upper bound was measured at Solar One during its final 
3 years [11]. Lower bound is plausible because salt 
receiver has higher flux level and Themis had problems 
maintaining Pyromark on 316 SS [12]. 

10 Heliostat Cleanliness 0.95 Uniform 
.93-.97 

Central value provided by LUZ for their mirror 
assemblies. Upper bound may be achievable with more 
frequent washes than employed by LUZ. Lower bound 
assumed symmetric to upper bound. 

11 Receiver Start Time 0.75 hr Uniform 
±33% 

Central value based on data from salt receivers tested at 
Sandia [13]. It is feasible that a more aggressive startup 
procedure and an optimized heliostat field could shorten 
startup by .25 hr. Temperature ramp rate limits, however, 
may lengthen startup by approximately the same 
amount. 

12 Heliostat Availability 0.99 Uniform Central value and range based on Solar One data [11] 
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.985-.995 and projections of plant personnel during the final 3 
years of operation. 

13 Receiver Thermal Losses 26.2 MW Uniform 
±24% 

Uncertainty in radiation estimates were estimated to be 
+/- 20% on the Sandia salt receiver analysis and tests 
[14]. Convective correlations are estimated to be +/- 
35% [15]. Stacking radiation and convection bounds 
given a 75/25 split between radiation and convection 
losses yields +/- 24%. 

14 Parasitic Multiplier 1 Uniform 
±20% 

Since SOLERGY parasitic power models were based on 
generic information, it was judged they could  be in error 
by +/- 20%. 

 
 
 

Table 4.  Uncertainty distributions for reliability parameters [2]. 

No. Parameter1 
Central 
Value 
(hrs) 

Distribution Number 
of Units Rationale 

15 
Hot and Cold 
Salt Pumps 

MTBF 
2800 Uniform 

±60% 
4 (2 hot, 
2 cold) 

Central estimate from pump and valve loop data [16]. Lower 
bound based on Themis salt pump data (-60%) [17] and Solar 
One receiver pump [18]. This value is similar to 90% confidence 
level for hot pump from pump and valve loop. Upper bound 
assumed to be symmetric to lower bound (+60%). 

16 
Hot and Cold 
Salt Pumps 

MDT2 
6.5 Uniform 

±70% 
4 (2 hot, 
2 cold) 

Central value based on judgments from Sandia pump and valve 
loop personnel. Lower bound based on mean value for Solar One 
receiver pump (-70%) [18]. Upper bound assumed to be 
symmetric to lower bound (+70%). 

17 Flow Control 
Valve MTBF 3460 Uniform 

±20% 
4 pumps 
5 others 

Bounds are the 10% and 90% confidence levels from FCV data at 
Solar One (31 failures in 104,000 valve hours) [18]. Limited FCV 
failure data from Sandia pump and valve loop is consistent with 
Solar One data. 

18 Flow Control 
Valve MDT2 2.9 

Discrete 
probability 
distribution 

4 pumps 
5 others 

Discrete probability distribution based on repair of 31 valves at 
Solar One [18]. Repair times for salt valves are expected to be 
similar. Discrete probability distribution: 0.5hr/29%, 1.5hr/19.4%, 
2.5hr/16%, 3.5hr/13%, 4.5hr/3.2%, 6.5hr/6.5%, 7.5hr/6.5%, 
8.5hr/6.5%. 

19 
Heliostat 

Array Control 
MTBF 

1284 Uniform 
±82% 1 

Lower bound based on data from Solar One [18]. Solar One 
believed to be pessimistic because redundancy was compromised 
due to identified problems. Upper bound is based on Solar One 
data as well, but assumes most of Solar One’s problems are 
corrected and redundant backup occurs 90% of the time (typical 
value). 

20 
Heliostat 

Array Control 
MDT 

3.3 
Discrete 

probability 
distribution 

1 
Discrete probability distribution based on repair of 25 HAC failures 
at Solar One [18]. Discrete probability distribution: 1hr/36%, 
3hr/32%, 5hr/24%, 9hr/4%, 13hr/4%. 

21 
Receiver 

Tube Leak 
MTBF 

4166 Uniform 
±50% 1 

Central estimate based on 3000 hours of leak-free operation at 
Themis [17]. Central value is the 50% confidence. Bounds based 
on judgment with lower bound representing possible age effects. 

22 
Receiver 

Tube Leak 
MDT 

14 
Discrete 

probability 
distribution 

1 

Discrete probability distribution based on 10 severe tube leaks 
repaired during unscheduled outages at Solar One [18]. Repair 
time for salt tubes expected to be similar. Discrete probability 
distribution: 0hr/40%, 0.7hr/10%, 3hr/10%, 8hr/20%, 13hr/10%, 
108hr/10%. 

23 
Warped 
Receiver 

Panel MTBF 
10,000 Uniform 

±80% 1 

Bounds are the 10% and 90% confidence levels from panel warp 
data at Solar One [18] (1 failure in 10,000 receiver hours). Due to 
differences in design of water/steam and salt panels, these values 
are believed to be conservative for a salt plant. 

24 
Warped 
Receiver 

Panel MDT 
46 Uniform 

±80% 1 
Range based on judgment. Depending on the design of receiver 
panels and attachments it may take 1-2 days to replace the panel 
(lower bound) or close to two weeks (upper bound). 

25 
Steam 

Generator 
System 

9500 Uniform 
±90% 1 

Central value based on 3 years of no forced outages at SEGS IV 
[19] (50% confidence of 0 failures in 7000 hrs). Lower bound 
based on heat recovery steam generator data [20] and may be 
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No. Parameter1 
Central 
Value 
(hrs) 

Distribution Number 
of Units Rationale 

MTBF indicative of thermal cycling problems that occur several years 
after plant startup. SEGS III-VII have had 10 years with no forced 
outages. Upper bound assumes SEGS III-VII data can be 
combined with thermal cycling problems. 

26 
Steam 

Generator 
System MDT 

14 
Discrete 

probability 
distribution 

1 
Assumed to be the same as the repair time for receiver tube 
leaks. Since both are tubular heat exchangers, this appears 
plausible. 

27 

Turbine 
Generator 

System 
MTBF 

319 Uniform 
±41% 1 

Central value is the mean value for -100-MW turbines reported in 
the NERC data base that see cyclic service [20]. Lower bound is 
mean of Solar One turbine data (-41%). Upper bound assumed to 
be symmetric to lower bound (+41%). 

28 
Turbine 

Generator 
System MDT 

3.3 Uniform 
±33% 1 

Central value is the mean value for 100-MW turbines reported in 
the NERC data base that see cyclic service [20]. Lower bound is 
mean of Solar One turbine data (-33%). Upper bound assumed to 
be symmetric to lower bound (+33%). 

29 

Master 
Control 
System 
MTBF 

165 Uniform 
±19% 1 

Bounds are the 10% and 90% confidence levels from distributed 
control system data at Solar One [18] (35 failures in 5774 control 
system hours). 

30 
Master 
Control 

System MDT 
2.7 

Discrete 
probability 
distribution 

1 

Discrete probability distribution based on repair of 35 distributed 
process control system failures at Solar One [18]. Discrete 
probability distribution: 0.6hr/48.5%, 1.8hr/14.3%, 3.0hr/11.4%, 
4.2hr/2.9%, 5.4hr/2.9%, 6.6hr/5.7%, 7.8hr/11.4%, 11.4hr/2.9%. 

31 
Electric Grid 

System 
MTBF 

962 Uniform 
±45% 1 

Bounds are the 10% and 90% confidence levels from on site and 
offsite electric grid failures at Solar One [18] (failures in 5774 grid 
hours). 

32 Electric Grid 
System MDT 2.7 Uniform 

±93% 1 

Bounds based on 6 grid failures repaired during unscheduled 
outages at Solar One [18]. Due to limited data the upper and 
lower bounds of these 6 failures were used rather than a discrete 
probability distribution. 

1MTBF = Mean time between failure, MDT = Mean down time. 
2In this study, the sampled mean down time for the pumps and pump valves was divided by two because the mean down time 
was assumed to be the cumulative down time for two pump trains. 

 
 

Table 5.  Fixed reliability parameters. 

Parameter Mean Time Between 
Failure (hrs) 

Mean Down 
Time (hrs) 

Number 
of Units 

Heat Trace 35,600 6.5 32 
Drain/Vent Valves 138,580 5.2 20 
Air Binding 1,923 1.5 1 
Control Gain Adjust 6,494 1.7 1 
Flow Transmitter 6,666 3.5 2 
Temperature Transmitter 62,500 2.3 2 
Pressure Transmitter 10,000 3.4 2 
Scheduled Outages 8,424 336 1 
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